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FREE RADICALS NOTES 
 
Definitions 
Free radical – organic species with an unpaired electron, not including carbenes and 
certain photochemically excited compounds. 
Stabilised – include carbon-centred radicals, R•, for which the R-H bond strength is 
less than that for the corresponding C-H in (1o/2o/3o) alkane. Usually transient. 
Persistent – radicals with a lifetime significantly greater than methyl under the same 
conditions. Not necessarily stabilised. Lifetimes range from seconds to years. 
 
Examples: 

Non-stabilised, persistent 

 
Stabilised, persistent 

Transient, non-stabilised Me• 
Transient, stabilised Me3C•, allyl• 

 
Valence Bond Picture of Heteroatom Stabilisation 
 
Dative: 

 
Therefore stabilised. 
 
Capto: 

 
Captodative: 
Only radicals can do this (ionic  one way is destabilised). 

 
Generation of Free Radicals 
Thermal cleavage of weak bonds 
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Photochemical cleavage of weak bonds 
Useful as heat can destabilise compound.  
Initiating compound must absorb light of appropriate wavelength to cleave the bond. 

 
Note that the latter reaction is technically a “phototransformation”. 
 
Electron Transfer 
 
Electrolytic – 

 
Redox (Fenton) – 

 
Dissolving Metal – 

 
SRN’ (Sandmeyer) – 

 
Giese’s Mercury Method – 

 
• Room temperature. 
• No UV initiation. 
• Clean - Hg• by-product. 

But, competing direction reduction is bad: 
R-Hg-H + R•  RH + Hg• 

 
Birch Reduction – 
1 electron process. 
Regiochemistry applies when substituted. 
 
See other notes (e.g. Oxidation and Reduction Notes) for the mechanism. 
 
Simple Reactions 
Radical Combination – 
Combining two radicals to terminate a chain reaction, R•+R•  R-R. Often slow due 
to low concentrations of radicals generally. Only really viable for long-lived radicals or 
via solvent cages (can be rapid in the latter case). 
 
Radical Abstraction – 
Attack often on a H atom or Halogen atom. 
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Can be thought of as displacement reaction. 
 
Radical Addition – 
Radicals can add to double or triple bonds, and it is often the case that anti-
Markovnikov product can be obtained by this route. For example: 

 
Fragmentation – 
This is the reverse of radical addition, and often occurs as β-elimination. An example 
would be: 

 
 
Rearrangements – 
These are radical reactions that occur intramolecularly (often abstraction). It can lead 
to cyclisation of long chain compounds. 
 
Some examples: 

 

 
Chain Reactions 
Example: 

 
Series of events: 
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Termination: 

 
At low concentration, this is unlikely. Minimising termination thus involves: 

• Low concentration of radicals  steady initiation (AIBN). 
• Fast propagation  2 x weak bonds to give 2 x strong bonds (e.g. Sn-H + R-I 

 Sn-I + R-H). 
 
Note that sometimes chain reactions do not occur, particularly with stable radicals or 
those that are trapped in solvent cages, for example: 

 
Cyclic Representation – 

 
Radicals Ions & the SET Mechanism 
 
Examples of reactions involving radical ions – pinacol, acyloin (see other notes). 
 
SRN1 Mechanism: 

 
Chain propagation – 

 
This is another example of Single Electron Transfer, then the SRN1 mechanism: 

 
 
Biradicals and Radical Pairs 
e.g. 

 
Also, benzene is a biradical in the triplet state. 
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Example reactions – Wittig & Stevens Rearrangements (see Rearrangements 
Notes). 
 
Also, Bergman Cyclisation – 

 
Free Radical Substitution 
 
Homolytic bimolecular substitution. Most common is H-abstraction. 
 

RBr + Bu3SnH  RH + Bu3SnBr 
 
Generally, 

 
In cyclic form: 

 
Comparison with (ionic) nucleophilic substitution – 
 

 
Attack at halogen instead. Driven by availability of the atom and bond strengths 
(particularly breaking). 
 
Determination of Reactivity and Regioselectivity 
 
Bond Breaking 

k = A e-E/RT 

 
ln A ≈ same values for different R in CH3

• + H-R  CH4 + R•. 
Thus, similar entropy for bimolecular process. Hence, Ea is proportional to D(R-H). 
ln k is also proportional to D(R-H) as a result [ linear correlation ], which implies bond 
breaking is important in the rate determining step. 
 
Bond Forming 
 
ln A similar, so Ea is proportional to D(X-H). Dominates as in bond breaking. 
ln k vs. D(X-H) is non-linear, i.e. bond forming may or may not be important  early 
or late Transition States (Hammond Postulate). 
 
 
 
 

cat. AIBN 
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Hammond Postulate – 

 
Thus, for H• abstraction by X•, when X = F reaction is very exothermic  early 
transition state (like starting materials), therefore little R-H breaking. Hence, T. State 
is not greatly affected by R: 
 
R-H--------F 
 
When X = Br reaction is endothermic  late transition state (like products). Thus 
significant R-H breaking. T. State will be sensitive to the nature of R:  
 
R--------H-Br 
 
In general, halogens become less discriminating in H-abstraction in the order: 

I > Br > Cl > F 
 
e.g. 

 
Polarity Effects 
 
Nucleophilic: 

 
Electrophilic: 

 
Explains the position of H-abstractions, e.g. 
 

δ
• δ

• 
F• highly reactive and unselective 

F• highly reactive and unselective 
δ

• δ
• 
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Wohl-Ziegler Allylic Bromination 

 
Then, 

 
Addition to Multiple Bonds 
 

 
Consider: 
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But, 

 
Selectivity 
 
Consider: 

 
For this to occur: 

 
tBu• + HSnBu3 is very fast (3x105 M-1 s-1) so set [Bu3SnH] to be as low as possible. 
Also set [H2C=CHCN] as high as possible. 
Reason why there’s no polymerisation? See below. 
 
Substituent Effects 

 
β-effects 

 
i.e. want electron withdrawing Z to stabilise T. State when nucleophilic radical. 

 
Consider: 

 
α-effects 
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Electron withdrawing group Y favours Nucleophilic radical a little, but sterics usually 
the dominant factor – often offset any electronically favourable effects operating. 
 
Radical Substituents 
 
Comparable to α-effects – generally slow addition. 
 
Mechanism 
 
Exothermic  early transition state (Hammond Postulate). 

 
Molecular Orbital Description – 

 
EWG on alkene:  lower HOMO and LUMO  ∆E2 < ∆E1. 
EDG on alkene:  raise HOMO and LUMO  ∆E1 < ∆E2. 
 
Radical Copolymerisation 

 
Allyl Transfer 
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Rearrangements 
 
R•  R’• without change of molecular formula. 
 
e.g. [1,5] H-transfer: 

 
Favourable by ~50-75 kJ mol-1. 
 
Mechanism 

 
Then several paths available: 

 
Homobenzylic Rearrangement 
 
(1,2-phenyl shift). 

 
Via: 

 
Cyclopropylcarbinyl Rearrangement 

 
But, 

 
Rate of H-atom Transfer – 
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R• + H-SnBu3  RH + •SnBu3  k = 2.5 x 106 M-1 s-1 
R• + H-SPh  RH + •SPh  k = 1 x 108 M-1 s-1 
 
Reason: 

 
Barton’s Pyridinethione Oxycarbonyl Esters (PTOC esters) 

 
Consider: 

 
Via: 

 
• C=S weak π-bond. 
• PhS• attacks S=C  S-S bond. 
• Aromaticity driven. 

 
Radical Clocks 
 
Free radical reactions having a known rate against which other reactions may be 
gauged (common is cyclopropylcarbinyl cleavage). 

 
β-scission 

 
Effect of varying attached groups: 
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R = Ph  Me• ejected, as: 
1) Phenyl destabilised wrt methyl, and 
2) Favourable phenyl-carbonyl π-overlap may develop in the transition state. 
 
Cyclisation 

 

 
Follows kinetic control: 

 
Baldwin’s Ring Closure: 
Most important here are the trigonal systems – 

3 to 7-exo-trig  FAV 
3 to 5-endo-trig  DISFAV 

6 to 7-endo-trig  FAV 
 
But thermodynamic control also? (Julia) 

 
Balance of: 

• Radical stabilisation, and 
• σ vs. π C-C bond strength 

 
5-exo-cyclisation followed by cyclopropylcarbinyl fragmentation also gives 6-
membered rings: 
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Depends on [Bu3SnH] – favours (1) >> (2) > (3). 
 
5-exo-cyclisation as a mechanistic probe – 

 
Ashby proposed: 
SET by AlH4

-  

 
(Probably correct). 
 
Newcomb proposed: 
Iodine atom transfer / reduction sequence, via: 

 
Radicals in Synthesis 
 
Functional Group Chemistry 
 
General Points – 

• C-centred radicals are extremely reactive, yet they can be generated under 
mild, neutral conditions and often undergo highly regio- and stereoselective 
reactions. 

• Radical additions to C=C are usually exothermic and irreversible with early, 
reactant-like Transition States. Kinetically controlled. 

• Since radicals are not cluttered with counterions or solvation spheres, radical 
intermediates are ideally suited for synthesis at crowded bonds. 

• C-centred radicals are inert to OH and NH, therefore no protecting groups for 
these. Exception: phenols (capto stabilised). 

• Unlike carbanions, carbon radicals are not subject to β-elimination of OR or 
NR2. 

 
• Unlike carbocations, carbon radicals are not subject to capture by β-OR or –

NR2 groups, nor are they usually prone to migration of β-H or –CR3 groups. 
They are, however, subject to β-elimination of SR, SOnR and SnR3 groups. 



 - 14 - 

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. 
www.alchemyst.f2o.org 

 
• Radical centres do not usually retain stereochemistry. Can be a drawback, 

but precursor synthesis is simplified (geometrically labile sp2-like radicals). 
 
Examples 
 
Barton Nitrite Ester Reaction 
 

 
Hoffmann-Loffler-Freytag Reaction 
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Barton’s PTOC Esters 

 
If there’s no added reducing agent (e.g. Bu3SnH): 

 
This leads to many possibilities for reaction: 

 
Removal of OH 
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Free Radicals in Natural Product Synthesis 
 
Prostaglandin F2α  

 
Iodoacetal tethered cyclisation – 

 
Notes: 
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Also, Silicon Tethered free radical reactions – 

 
Talaromycin A 

 

 
Comparison of iodoacetal and silicon tethered radical reactions 

 
α-Cedrene 
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Acyl Selenides as acyl radical precursors 

 

 
Fragmentation Chemistry in Synthesis 
 
Intramolecular Annulation 

 
Epoxide Fragmentations 

 
Incorporation into cascade sequences 

 


